HexaMesh: Chiplet Topologies Inspired by Nature
By Timothy Prickett Morgan, The Next Platform
With the reticle limit for chip manufacturing pretty much set in stone (pun intended) at 26 millimeters by 33 millimeters down to 2 nanometer transistor sizes with extreme ultraviolet lithography techniques and being cut in half to 26 millimeters by 16.5 millimeters for the High-NA extreme ultraviolet lithography needed to push below 2 nanometer transistor sizes, chiplets are inevitable and monolithic dies are absolutely going to become a thing of the past.
And so the question arises: When it comes to large complexes of chiplets, what is the best shape for a chiplet, and what is the optimal arrangement of these chiplets and the interconnects that link them together into a virtual monolith? (Again, pun intended.) Researchers at ETH Zurich and the University of Bologna played a little game of chiplet Tetris to try to find out, and came up with a neat configuration they call HexaMesh.
To read the full article, click here
Related Chiplet
- DPIQ Tx PICs
- IMDD Tx PICs
- Near-Packaged Optics (NPO) Chiplet Solution
- High Performance Droplet
- Interconnect Chiplet
Related Technical Papers
- HexaMesh: Scaling to Hundreds of Chiplets with an Optimized Chiplet Arrangement
- AIG-CIM: A Scalable Chiplet Module with Tri-Gear Heterogeneous Compute-in-Memory for Diffusion Acceleration
- Modular Compilation for Quantum Chiplet Architectures
- PlaceIT: Placement-based Inter-Chiplet Interconnect Topologies
Latest Technical Papers
- Foundry-Enabled Patterning of Diamond Quantum Microchiplets for Scalable Quantum Photonics
- Advances in waveguide to waveguide couplers for 3D integrated photonic packaging
- Lifecycle Cost-Effectiveness Modeling for Redundancy-Enhanced Multi-Chiplet Architectures
- DISTIL: A Distributed Spiking Neural Network Accelerator on 2.5D Chiplet Systems
- Multi-Partner Project: COIN-3D -- Collaborative Innovation in 3D VLSI Reliability